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the sensitivity of recent conclusions16 about mode selectivity in 
SN2 reactions to variations in the potential energy function. 
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1. Introduction 
The study of solvent effects on chemical reaction rates has a 

long history, and it has played a central role in recent work 
examining the applicability of transition-state theory to reactions 
in solution, as discussed in recent reviews.'"3 Theoretical in­
terpretation of bimolecular nucleophilic substitution (SN2) re­
actions also has a long history,4'5 and these reactions have become 
the prototype for recent work on solvent effects. In particular, 
the reaction of chloride with methyl chloride has received con­
siderable recent attention.6"22 Two strong themes distinguishing 
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the modern work from the classical studies23 are (i) the comparison 
of ionic reaction kinetics in solution to data on the same reactions 
as they occur with uncomplexed reagents in the gas phase8"15,21,22 

and (ii) quantitative studies of microsolvated species, i.e., clusters, 
as a bridge between the gas phase and solution.6,11,24"29 This paper 
is a detailed study of the effect of microsolvation, in particular 
microhydration, on the prototype SN2 reaction of chloride and 
methyl chloride, using variational transition-state theory 
(VTST)'3,131617,30"35 and a potential energy surface in which all 
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Abstract: We present a potential energy surface for the microhydrated SN2 reaction of a chloride ion with methyl chloride 
in the presence of one or two water molecules. All degrees of freedom are included. We analyze the stationary points corresponding 
to reactant, ion-dipole complex, and transition state for the monohydrated and the dihydrated reactions, and we use generalized 
transition-state theory to evaluate the rate constants for these reactions. A noteworthy feature of the dynamics calculations 
is that vibrational zero point effects are included, as are effects of quantization on vibrational heat capacities and entropies, 
and water molecules are treated as nonrigid. We find that the rate constant at 300 K decreases from the gas-phase value 
of 3.5 X 10"14 cm3 molecule"' s"1 to a value of 1.1 X 10"'7 cm3 molecule"1 s"1 for the monohydrated reaction and to a value 
of 3.7 X 10"20 cm3 molecule"' s"1 for the dihydrated reaction. We have also evaluated the rate constant for the monohydrated 
reaction under the equilibrium solvation approximation. The extent of nonequilibrium solvation is tested by comparing calculations 
in which the water molecule degrees of freedom participate in the reaction coordinate to those in which they do not. Two 
different methods for defining the generalized transition-state theory dividing surface under the equilibrium solvation approximation 
lead to quite different values for the equilibrium solvation rate constant, and we determine which equilibrium solvation 
approximation is more appropriate by using variational transition-state theory. 
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degrees of freedom of both the reagents and the solvating molecules 
are included explicitly. 

The effect of solvent molecules on chemical reactions can be 
classified into two different types of contributions. The first type, 
called static solvation effects, are contributions which do not 
require inclusion of the solvent coordinates in the reaction co­
ordinate (the precise meaning of this statement is clarified in 
section 4); static solvation effects can be incorporated into reaction 
rate calculations by letting the solvent equilibrate for each given 
geometry of the solute or—more approximately—by an equilib­
rium continuum model. When solvation effects are included in 
transition-state theory calculations, static solvent effects are as­
sociated with solvent contributions to the free energy of activation 
along the equilibrium solvation path; this path is defined in co­
ordinate space by assuming that, at each point on the solute 
reaction path determined in the absence of solvent, the solvent 
is equilibrated with the solute. These static solvent effects are 
therefore also called equilibrium solvation effects. 

However, this kind of treatment will sometimes neglect im­
portant solvent-solute couplings. Solvent effects which require 
a more dynamical treatment of the solvent coordinates are called 
dynamic or nonequilibrium solvation effects. The phenomenon 
of nonequilibrium solvation has been discussed recently by Kurz, 
Hynes, and Warshel and their respective co-work­
ers. 12,13,16,18,19,34,36-40 These discussions have suggested that the 
extent of equilibration of the solvent will be governed by the 
strength of the solute-solvent coupling, as given by the interaction 
force field, by the sharpness of the barrier, and by the characteristic 
time scales of solvent motion and solute reactive motion. In 
general, if the characteristic time scale for solvent reorganization 
is much slower than the time scale for solute reactive motion, 
nonequilibrium solvation effects on the rate constants are expected 
to be significant; however, the solvent-solute coupling strength 
is also paramount in determining the magnitude of these effects. 
One approach would suggest that strong solute-solvent interactions 
yield large nonequilibrium solvation effects because strong coupling 
allows the solvent to hinder reactive solute motion, but Kurz and 
Kurz36 argue that strong solute-solvent coupling may lead to 
negligible nonequilibrium solvation effects because strong coupling 
forces the solvent to remain equilibrated with the solute, a con­
certed mechanism. In the case of weak coupling, Kurz and Kurz36 

suggest that time scale differences will cause a sequential 
mechanism. Motion along the equilibrium solvation path and 
nonequilibrium solvation effects may both involve concerted solvent 
and solute motions, and thus either may correspond to the "coupled 
mechanism" discussed by Kurz and co-workers.36,37 The dynamics 
of the solute-solvent coupling has been explored in the framework 
of linear response theory by Hwang et al.,18 who evaluated the 
solute-solvent coupling by including the solvent in the solute 
Hamiltonian in a simulation. Their interpretation of the results 
supports the view of Kurz and Kurz.36 

Because these ideas of equilibrium and nonequilibrium solvation 
effects are central to solution-phase kinetics, it is worthwhile to 
attempt a more precise formulation, and this is one of the goals 
of the present work. In particular, we adapt a reaction-path 
formalism previously developed30"32 for gas-phase variational 
transition-state theory for this purpose. We then evaluate the 
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importance of nonequilibrium solvation effects on the micro­
hydrated chloride plus methyl chloride system by comparing 
variational transition-state theory rate constants evaluated without 
assuming equilibrium solvation to those evaluated with equilibrium 
solvation enforced. We note that in the nonequilibrium solvation 
calculations presented here, deviations from the equilibrium 
solvation path are allowed to occur in the solute coordinates as 
well as in the solvent coordinates. 

We begin, in section 2, by describing the analytic functions we 
use to represent the potential energy function and the charge 
switching of the microhydrated system. In section 3, we describe 
the calculated stationary points along the reaction paths of the 
monohydrated and the dihydrated systems. In section 4, we discuss 
how generalized transition-state theory is applied in a calculation 
in which all degrees of freedom of the interacting particles are 
considered explicitly, i.e., in a nonequilibrium solvation calculation. 
We then discuss two different methods for applying generalized 
transition-state theory when making the equilibrium solvation 
assumption. 

We apply these methods to the microhydrated chloride plus 
methyl chloride reaction, and we give the details of the calculations 
in section 5. In section 6 we present results; section 6.1 gives 
reaction rate constants from nonequilibrium solvation calculations 
(i.e., VTST allowing all degrees of freedom to participate in the 
local reaction coordinate) for both the mono- and dihydrated 
reactions; section 6.2 gives the reaction rate constants for the 
monohydrated reaction reevaluated under the equilibrium solvation 
approximation by the two methods discussed in section 4, and we 
compare the results to the nonequilibrium solvation results for 
this reaction. We find that the two different methods for applying 
generalized transition-state theory with equilibrium solvation yield 
quite different results, we discuss why this is so, and we use the 
variational criterion of generalized transition-state theory to de­
termine which is the better model. Finally, in section 7, we discuss 
the relevance of these results to other studies on the solvated 
chloride plus methyl chloride reaction and on nonequilibrium 
solvation effects in general. 

2. Potential Energy Surfaces 
We start with our semiempirical, multidimensional surface S 

for the gas-phase reaction 

Cl" + CH3Cl' -* ClCH3 + Cl'" (Rl) 

which we described in the preceding paper.41 We will use surface 
S as a building block for creating surfaces for the series of reactions 

(H2O)n-Cl- + CH3Cl' — ClCH3 + Cr-(H2O)n (R2) 

In order to develop a full potential energy surface for reaction 
R2 with n = 1, we add an intramolecular water potential and a 
solute-solvent interaction potential, as discussed below. For n 
> 1, we also add an intermolecular water-water potential. 

For the intermolecular water-water potential we use the RWK2 
potential, I/RWK2, of Reimers et al.,42 because it was designed to 
give interactions between deformable monomer units, and it has 
been shown to give reasonable values for experimental observables, 
when combined with a suitable intramolecular potential,43 both 
for clusters of small numbers of water molecules44 and for water 
in the bulk phase.45 The ability of the model to represent both 
cluster and bulk phase water is quite desirable if one hopes 
eventually to gain an understanding of reactions in bulk solution 
by using large vales for n, the number of water molecules, in 
reaction R2. 

For the intramolecular water potential, V, we use the coupled 
local mode potential of Coker, Miller, and Watts,46 and we 
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combine it with the RWK2 intermolecular potential in the manner 
of Coker and Watts.47 Because there are typographical errors 
in some of the original papers on these potentials,42"45 we note 
that we take the potential form and parameters to be exactly as 
given in ref 47. 

The RWK2 intermolecular potential is based on a sum of 
site-site interactions. It involves one site on each of the three atoms 
of H2O for the short-range interactions and one site on each 
hydrogen plus a site displaced from the oxygen for the coulombic 
interactions; in the standard terminology, then, it is a "four-site" 
model. The combined inter- and intramolecular potential of Coker 
and Watts uses a well-defined prescription for the position of the 
fourth (not atom-centered) site on each molecule as a function 
of the positions of the atoms of that molecule. We shall use the 
site positions and charge values of the Coker and Watts model 
to define the necessary water parameters in the solute-water 
interaction potential. 

For the solute-water interaction potential V^, we use a sum 
of atom-atom interactions, each of which has a short-range term 
Vs*- and a coulombic term V° such that 

pSS = , /SR + j/C (!) 

The short-range and long-range parts are modelled differently. 
For the short-range interactions we use either a Lennard-Jones 

potential or an entirely repulsive potential, depending on the 
atom-atom interaction being considered. Thus, V5* is given by 

^ R = I iaaet-
b«*« - AaBRf + B^RJj" (2) 

where «is the number of water molecules, so the sum over /' runs 
over all water atoms, the sum overy runs over all solute atoms, 
and the indices a and 0 refer to the atom types of atoms / and 
j . For interactions between a solute chlorine atom and an atom 
in water, we set Aaa and S 0 0 equal to zero. The parameters a^ 
and baC] are taken from the chloride-water "simple" analytic 
potential of Kistenmacher et al.48 For interactions between any 
solute methyl group atom and a water atom, a^ and ba$ are set 
to zero, and Aag and Bag are taken from Clementi et al.49 

Clementi et al. use different values for Aag and 2?a/3, where a is 
a water hydrogen or oxygen, and £ is a solute carbon or hydrogen, 
depending on the local environment of the carbon, which can be 
determined by the charge on the carbon. For example, for ali­
phatic carbon sites having only hydrogens and alkyl groups as 
substituents, Clementi et al. distinguish between (use different 
interaction parameters for) primary (average charge is -0.149 
e), secondary (average charge is -0.373 e), and tertiary (average 
charge is -0.611 e) carbons. (We determined the average charge 
values from a study of amino acids by Clementi et al.49) Because 
the charge on the solute carbon in the present study varies from 
-0.183 e to -0.397 e along the reaction coordinate (see below), 
we use Clementi et al.'s interaction parameters for secondary 
carbons. For parameters for interactions of the solute hydrogens 
with the water, we use, for consistency, Clementi et al.'s values 
for a hydrogen attached to a secondary carbon. To be precise, 
we have listed all of the short-range interaction parameters in 
Table Al in the Supplementary Material. We note that we chose 
the above mentioned parameter sets for the short-range solute-
water interactions because they are compatible with a three-site 
atom-centered-site model for water, which, unlike a one-site 
short-range interaction model for water such as used in the 
TIP4P50 and SPC5' potentials, is unambiguous and realistic to 
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Table I. Values of the Parameters Used in Eq 4 To Define the 
Charge on the Carbon as a Function of rc 

Table II. 
Points" 

e 
X 

parameter 

Ac 
Q 
/3c 

value 

0.214 e 
-0.397 e 

0.740 A*2 

Values of the Solute Charges at the Gas-Phase Stationary 

<?CI 

-1.000 
-0.946 
-0.627 

to' 
-0.220 
-0.284 
-0.627 

<7c 
-0.397 
-0.341 
-0.183 

<?H 

0.206 
0.190 
0.146 

"In units of e. 

extend to deformable water molecules. Also, the "simple" water 
model used by Clementi and co-workers48 is very similar to the 
RWK242 water model that we use here. In particular, both models 
consider one site on each atom for short-range interactions. 
Although the model of Clementi and co-workers48 has five charge 
sites and the RWK242 model has only three, two of these sites 
are placed on the hydrogen atoms as they are in the RWK2 model 
and one is placed 0.23 A along the <HOH bisector, as compared 
to 0.26 A along this bisector in the RWK2 model (for undeformed 
monomer). The remaining two charge sites of the model of 
Clementi and co-workers48 are not expected to be very significant 
because they have charge values of less than 0.01 e. The values 
of the charge separation in the two models are also similar—the 
value of the negative charge site in the model of Clementi and 
co-workers48 is 1.38 e as compared to a value of 1.2 e in the RWK2 
model. 

For the long-range part of the solute-water interaction, V0, we 
use a sum of charge-charge interactions 

^ = L E - ^ (3) 
i=iy-i Ktj 

where the sum over j runs over all charge sites on the waters, three 
per water monomer, as defined in the RWK2 potential; the sum 
over,/' runs over all solute atoms; and Ry is the distance between 
site i and site j . The charges q™ and q- are defined as follows. 
For the charges at water sites, qj, we use the values from the 
RWK2 potential; see ref 47. The solute charges, tf, are a function 
of rc, which is defined (as previously)41 as the difference between 
the two carbon-chlorine bond lengths, and ru, the chlorine-
chlorine distance. For the chlorine charge values we use the charge 
values directly from surface S. For surface S, however, charge 
values are only defined for the two chlorines and for the methyl 
group as a single unit. Here we need the charges on the individual 
atoms. From a Mulliken population analysis of MP2/6-31G**52 

gas-phase wave functions at the three distinct stationary points, 
reactants (#: Cl" + CH3Cl), complex (<?: Cr-CH3Cl), and 
saddle point (*: [Cl-CH3-Cl]"),53 we have a value for the charge 
on carbon as a function of rc. We fit these charges as a function 
of rc with the form 

qc = Ac<rfo<2 + Cc (4) 

where Ac and Cc are determined by the values of qc at * and 
Ji, and /3C is then determined by the value of <?c at <?. The values 
of these parameters are given in Table I. We then find the charge 
on each hydrogen, qH, by requiring that the sum of the charges 
on the individual methyl group atoms sum to the united methyl 
group charge, qMt, of surface S, i.e. 

QH = 3 ["7Me(Vn) - <?cW] (5) 

(52) We use the standard notation for ab initio electronic structure cal­
culations. See, e.g.: Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. 
A. Ab Initio Molecular Orbital Theory, John Wiley & Sons; New York, 1986. 
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Table III. Internal Coordinates for (H2O)-Cl" Compared to Values 
for the Isolated Water Monomer 

Table IV. Internal Coordinates for (H2O)2-Cl": Isolated Water 
Dimer Geometries Are Given for Comparison" 

'CIH 

'H»0 
/ClHO 
/HOH 

(H2O)-Cl" 
2.461 A 
0.97! A 
0.955 A 
161.4 deg 
100.9 deg 

H2O model/experiment'1 

0.957 A 
0.957 A 

104.5 deg 

(H2O)2-Cl" (H2O)2 

"The model potential used here43,4* was designed to reproduce the 
experimental geometry54 of an isolated water molecule. 

The values of qCh qa, qc, and qH at !R, G, and * are given in Table 
II. We note that eq 14 assumes that the changes of charges along 
the reaction coordinate are unaffected by the solvent orientation. 
That is, it does not consider the polarization of the solute by the 
solvent. This approximation has been tested,14'17 and it tends to 
underestimate the solute-solvent coupling. It would be interesting 
to see, in future work, whether our conclusions about nonequi-
librium solvation are sensitive to this refinement of the potential 
energy function. 

The full potential for reaction R2 with n > 1 is thus 

V = Ks(x) + VtW(XVt) + V»(x;n) + V**(x;n) + **(*;«) 
(6) 

where x is a vector giving the positions of all of the atoms of the 
system, the dimension of x being 3n + 18, Vs is the potential of 
surface S which depends only on solute coordinates, and KRWK2, 
K*, VSK, and K0 are as described above. For n = 1, we omit 
KRWK2 since it is not needed. 

3. Stationary Points and Reaction Energetics 
For n = 1 and 2, we have located and analyzed stationary points 

for reaction R2 which are microhydrated analogues of Jl, Q, and 
* of the unsolvated41 reaction R1. Minima and saddle points were 
both found by a Newton-Raphson search over all coordinates. 
In this section we discuss the salient features of these stationary 
points. A complete set of Cartesian coordinates for all of these 
stationary points is given in the Supplementary Material of this 
paper. In section 3.1 we will discuss the microsolvated reactant 
for R2 with H = I , (H2O)-Cl", and with n = 2, (H2O)2-Cl-. In 
section 3.2 we discuss the microsolvated complexes for n = 1 and 
n = 2, (H2O)n-Cr-CH3Cl, and in section 3.3 we discuss the 
microsolvated transition states for « = 1 and n = 2, (H2O)n-
[Cl-CH3-Cl]-. 

3.1. (H2O)n-Cl". The structure of the (H2O)-Cl" ion is given 
in Figure la. It is qualitatively very similar to the structures found 
by Morokuma6 in Hartree-Fock calculations with a 3-2IG basis 
set and by Chandrasekhar et al.8 from analytic fits to HF/6-31G* 
calculations. The most distinctive part of this structure is the 
apparent hydrogen bond between the chloride ion and the closer 
hydrogen, which we shall denote as Hd for donor. The Cl~-Hd 

distance is 2.46 A, and the 0 H d bond length is 0.971 A, which 
is very similar to the donor OH bond length in the water dimer 
of Reimers and Watts,44 0.978 A, as compared to a value in the 
isolated monomer of 0.957 A.43'46'54 The other OH bond length 
of 0.955 A is also very similar to the corresponding OH bond 
length in the water dimer of Reimers and Watts,44 0.956 A. We 
also see a 5% decrease in the HOH bond angle. The internal 
coordinates are given in Table III, along with values for the isolated 
water monomer for comparison.4^46,54 For this configuration we 
find that the energy relative to the energy of infinitely separated 
Cl" and H2O, which is also (minus) the energy of microsolvation, 
is -9.4 kcal/mol. We also evaluate the enthalpy of microsolvation. 
In evaluating the thermodynamic energy, we treat vibrations by 
the harmonic, independent normal mode approximation. For the 
(H2O)-Cr complex, we find an enthalpy of microsolvation of 8.7 
kcal/mol, which, although qualitatively reasonable, is rather low 
compared to experimental values of 13.1 kcal/mol from one study 
and 14.7-14.9 kcal/mol from others.55 

(54) Herzberg, G. Molecular Spectra and Molecular Structure; D. Van 
Nostrand Company: New York, 1966; Vol. Ill, p 585. 

0.973 A 
0.966 A 
0.976 A 
0.959 A 

100.1 deg 
101.7 deg 

1.85 A 
2.44 A 
2.74 A 

0.979 A 
0.956 A 
0.961 A 
0.961 A 

104.1 deg 
104.7 dee 

1.76 A 

'OHj(A) 
'OHn(A) 

'OHa(B) 
'OH-(B) 
ZHOH0(A) 
zHOHd(B) 
'Hj0(A1B) 
'H0Cl(B) 
'HnCl(A) 
dihedral angle /Hn(A)O(A)O(B)H0(B) = 13.6 deg 

" From the potential model used here, ref 47. A is defined as the 
water having the donor hydrogen of the water-water hydrogen bond, 
Hd are donor hydrogens, Hn are not (see Figure lb). 

For the (H2O)2-Cl" complex, we find the energy relative to 
infinitely separated molecules (ions), i.e., H2O + H2O + Cl", is 
-21.3 kcal/mol. The energy change for addition of the second 
water to the (H2O)-Cl" complex is therefore -11.9 kcal/mol. The 
enthalpy change for this process is -9.8 kcal/mol, compared with 
experimental values which range from -12.6 to -13.0 kcal/mol.55 

In our model, the energy (and enthalpy) change for adding the 
second water is greater than that for adding the first, because we 
get an additional contribution from the water-water interaction. 
(Although this trend is not in agreement with experiment55 for 
microhydration of Cl", a similar effect has been found56 for 
microsolvation of transition-metal atomic ions.) If the chlo­
ride-water interactions in our potential model were stronger, the 
water-water interaction energy would not be as large a percentage 
of the energy change for the addition of the second water molecule, 
and we would reproduce the experimental result that the enthalpy 
change for adding the second water is less than that for adding 
the first. We conclude that although the potential yields mi­
crohydration enthalpies accurate to within a few kcal/mol, the 
chloride-water interaction is probably quantitatively too weak. 

This explanation is supported by the structure for (H2O)2-Cl" 
which has a hydrogen bond between water B and hydrogen Hd(A) 
on water A, which points toward water B in Figure lb. A 
summary of the internal coordinates is given in Table IV, along 
with values for the water dimer47 for comparison. As evidence 
that the hydrogen-water interaction is a hydrogen bond, we note 
that the distance between Hd(A) and the oxygen of water B is 
1.85 A as compared to a hydrogen bond length of 1.77 A in the 
water dimer of Reimers and Watts.44 Also, the water A 0H d bond 
distance of 0.973 A is correctly lengthened from the monomer 
value of 0.957 A. Figure lb also shows one hydrogen on each 
water pointing (roughly) toward the chloride ion. For water B, 
the OH bond length for this hydrogen is 0.976 A, and the distance 
to the chloride from this hydrogen is 2.44 A. These distances 
indicate that this hydrogen forms a hydrogen bond with the 
chloride ion, and we refer to it as Hd(B) in Table IV. The hy­
drogen on water B which is barely seen in Figure 1 b is clearly 
non-hydrogen-bonding, and we denote it Hn(B) in Table IV. 
Finally, the remaining hydrogen on water A, which points roughly 
toward the chloride ion, appears to form a partial hydrogen bond 
with the chloride (however, we label it Hn(A) in Table IV to 
distinguish it from Hd(A) which is the donor hydrogen for the 
water-water hydrogen bond). This partial H bond character is 
illustrated by an intermediate OH bond length of 0.966 A (com­
pared to the length of OHd(B) of 0.976 A and OHn(B) of 0.959 
A) and an intermediate hydrogen chloride distance of 2.74 A 
(compared to the H0(B)-Cl distance of 2.44 A). 

In Table V, we give harmonic frequencies for the two reactant 
structures. For comparison, we also list harmonic frequencies for 
the water monomer and water dimer, both from experiment54,57'58 

(55) Keesee, R. G.; Castleman, A. W., Jr. J. Phys. Chem. Ref. Data 1986, 
15, 1018. 

(56) Marinelli, P. J.; Squires, R. R. J. Am. Chem. Soc. 1989, / / / , 410. 
(57) Dyke, T. R.; Mack, K. M.; Muenter, J. S. J. Chem. Phys. 1977, 66, 

498. 
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Table V. Harmonic Frequencies at the Minima: Gas-Phase Results (from ref 41) and Water Monomer and Dimer Frequencies Are Included for 
Comparison 

H2O 
exp" model 

1595 1639 

3657 3817 

3756 3922 

(H2O)2 

exp* 

d 

d 
d 

150 
d 

d 

1593 
1611 

3550 
3627 
3699 
3715 

model 

115' 

169 
219 

272 
483 

782 

1620 
1682 

3527 
3784 
3887 
3888 

(H2O)-Cl-

132 

269 

603 

1758 

3681 

3919 

(H2O)2-Cl-

80 

135 
179 
254 
266 
457 
486 
728 

787 

1717 
1814 

3586 
3646 
3776 
3875 

e 

68 
68 

113 

698 

970 
970 

1305 
1429 
1429 

3035 
3155 
3155 

(H2O)-V? 

d 
9 

10 

66 
67 
86 

136 

258 

574 
706 

977 
977 

1316 
1431 
1431 
1747 

3027 
3146 
3146 

3696 

3916 

(H2O)2-C? 

d 
12 
14 
63 
66 
67 
88 

139 
186 
247 
267 
439 
477 
715 
709 
785 
982 
983 

1324 
1432 
1433 
1706 
1804 
3021 
3139 
3140 
3577 
3657 
3790 
3873 

source' 

S/T 
S/T 
S/T 
D/T 
C/T 
C/T 
C/T 
S/T 
D/T 
D/T 
S/T 
D/T 
D/T 
S/T 
C/M 
D/T 
C/M 
C/M 
C/M 
C/M 
C/M 
D/M 
D/M 
C/M 
C/M 
C/M 
D/M 
D/M 
D/M 
D/M 

description 

(H2O)n free rotor 
H2O-Cl-CH3Cl bend 
H2O-Cl-CH3Cl bend 
H2O torsion around OHd(A) bond 
Cl-C-Cl bend 
Cl-C-Cl bend 
Cl-CH3Cl stretch 
Cl-(H2O)n stretch 
H2-O-H2O(A) bend 
H2O(B) torsion around C21, axis 
Cl-HdO bend 
H2O-H2O stretch 
Hd-0(A)-0(B) in plane bend 
H2-O-Cl bend 
CH3-Cl stretch 
Hj-O(A)-O(B) out-of-plane bend 
CH3 rock 
CH3 rock 
CH3 umbrella 
CH3 deformation 
CH3 deformation 
H-O-H bend(B) 
H-O-H bend(A) 
C-H stretch 
C-H stretch 
C-H stretch 
0 -H d stretch 
O-H stretch 
O-H stretch 
Q-Hn stretch 

"Reference 54. 'References 57 and 58. 'The source of each mode is categorized by one of the following designations: C/T, a transient mode of 
the complex, i.e., one which goes to zero when Cl" is infinitely far from CH3Cl; C/M, a mode of the complex which also appears in CH3Cl; D/T, a 
transient mode of the water dimer, i.e., one which goes to zero for one H2O infinitely far from the other H2O; D/M, a mode of the water dimer which 
also appears in the water monomer; S/T, a transient mode of any solvated species, i.e., one which goes to zero when the solvent is infinitely far from 
the solute. dNot available. 'Frequencies are in cm'1. 

Table VI. Internal Coordinates for (H2O)-Cl--CH3Cl Table VII. Internal Coordinates for (H2O)2-Cr-CH3Cl" 

'ciH, = 2.50 A 
r0Hi = 0.970 A 
r0H„ = 0.955 A 
r%a = 3.20 A 

ZHOH = 101.2 deg 
zCIHdO = 162.8 deg 
ZClCCl= 179.4 deg 

and from the potential model.41 

3.2. ( H 2 0 ) B - C l - - C H 3 a . We find the energy of the n = 1 
complex relative to the energy of H2O + CH3Cl + Cl" is -19.5 
kcal/mol. The energy of microsolvation (n = 1) of the gas-phase 
complex is then 8.5 kcal/mol, slightly less than the microsolvation 
energy of a lone chloride ion, and the energy difference between 
the reactants of R2 with n = 1 and the complex of R2 with n = 
1 is -10.1 kcal/mol. Figure 2 is a schematic diagram of the 
reaction energetics for reactions R l , R2 with n = 1 and R2 with 
n = 2. 

The n = 1 complex is shown in Figure Ic. We list relevant 
internal coordinates in Table VI. In this structure, we see that 
the water still bonds primarily to the more negatively charged 
chlorine, with a geometry similar to the (H2O)-Cl- geometry, 
although the water is somewhat rotated and the HOH angle has 
been increased slightly. The solute geometry no longer retains 
C3v symmetry, although all deviations from the gas-phase com­
plex41 are of the order of 0.5 deg for angles and 0.01 A for bond 
lengths, except for the longer CCl bond, /cci> which is increased 
by 0.06 to 3.20 A. 

The most interesting aspect of this complex is that there is 
virtually no barrier to rotation of the water molecule around the 
solute "C3„ symmetry axis". (Although the C31, symmetry axis 
is no longer truly defined, it is still a useful construct, since the 
deviations of the solute from C3c symmetry are so small.) The 

(58) Bentwood, R. M.; Barnes, A. J.; Orville-Thomas, W. J. J. MoI. 
Spectrosc. 1980, 84, 391. 

r0Hd(A) = 0.974 A 
r0Hn(A) = 0.965 A 
r0Hd(B) = 0.974 A 
r0H„(B) = 0.959 A 
rHd0(A,B)= 1.84 A 
r„c,(A) = 2.80 A 
^ a ( B ) = 2.47 A 
rcci = 3.26 A 

zHOHd(A) = 100.4 deg 
ZHOHd(B) = 102.0 deg 

"Notation is the same as in Table IV. 

barrier to this rotation is less than 0.0005 kcal/mol. Finally, we 
note that Chandrasekhar et al.8 and Morokuma6 also predict an 
end-on water structure for the one water complex. 

In Figure Id we show the structure for the complex with two 
waters, (H 2 O) 2 -Cr-CH 3 Cl , and in Table VII we give some of 
the relevant internal coordinates. As in the complex with one 
water, both waters interact almost entirely with the far, more 
highly charged chlorine; their interaction with the MeCl is min­
imal, and the MeCl shows only very minor deviations from C3„ 
symmetry. In this case, there is a significant water-water in­
teraction, and the barrier for rotation of the water dimer, as a 
unit, around the solute "C3,, symmetry axis" is virtually nonexistent, 
at ~ 0 . 0 0 3 kcal/mol. Note first that the longer CCl bond has 
extended further, to 3.26 A, which is 0.12 A longer than in the 
gas-phase complex. The water-water-chlorine arrangement re­
sembles that of (H2O)2-Cl", and we use the notation developed 
in the discussion of this structure: Hd (A), Hn(A), H1)(B), and 
Hn(B); it has one water-water hydrogen bond, H0-(A)-O(B), which 
has a "bond" distance of 1.84 A and two fairly strong hydrogen 
chlorine interactions, Hd(B)-Cl and H-(A)-Cl , which have in-
ternuclear distances of 2.47 and 2.80 A, respectively. The in­
tramolecular OH bond lengths reflect the degree of hydrogen 
bonding for each H as seen in the previous structures. Finally, 
we again see that the HOH angles are smaller than in the un-
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Figure 1. Illustrations of the stationary points for the reaction R2 with n - 1 and n = 2. Parts a-f, which are labeled 1-6, respectively, are as follows: 
(a) (H2O)-Cl", all four atoms lie in a plane; (b) (H2O)2-CI"; (c) the complex (H2O)-Cr-CH3Cl, the water molecule lies in the same plane as both 
chlorines, the carbon, and one methyl hydrogen; (d) the complex (HjO)2-Cl"-CH3Cl; (e) the saddle point (H2O)-[Cl-CH3-Cl]", the water molecule 
lies in the same plane as both chlorines, the carbon, and the one methyl hydrogen; it falls midway between the other two methyl hydrogens; (f) the 
saddle point (H2O)2-[Cl-CH3-CI]", each water is located symmetrically with respect to the chlorines; i.e., the oxygens are in the methyl plane; they 
are located equal distances from the carbon; this structure has a C20 symmetry axis defined by the carbon and the methyl hydrogen which points out 
from the plane of the figure. 

Table VIH. Internal Coordinates for H2O-[Cl-CH3-Cl]" at the 
Saddle Point 

r0H = 0.962 A /HOH = 103.1 deg 
rccl = 2.296 A ZClCCl = 177.7 deg 
rco = 3.17 A 
r„c, = 2.96 A 
'HM.0 - 2-8° A 

interaction. Finally, in Table V we give the frequencies of the 
complex with one water, the complex with two waters and, for 
comparison, the gas-phase complex. A useful comparison can also 
be made with the previously mentioned frequencies listed in that 
table, since water-water and chloride ion-water type interactions 
dominate the interaction spectrum. The correlation of frequencies 
from the various compounds is fairly straightforward. 

3.3. (H2O)n-[Q-CH3-Cl]". Now we consider the microsolvated 
saddle point structures. We start with the saddle point for reaction 
R2 with n = l . The optimized structure is given in Figure Ie. 
The water is located symmetrically between the two chlorines and 
between two of the hydrogens to yield a transition state with C21, 
symmetry. Each water hydrogen forms a partial hydrogen bond 
with the nearest chlorine, as suggested by an H-Cl bond length 
of a moderate 2.96 A and a water OH distance having an in­
termediate value of 0.962 A. The methyl group hydrogens interact 
only weakly with the water oxygen, with an internuclear distance 
of 2.80 A. The solute is noticeably perturbed from C30 symmetry, 
with the chlorines bent toward the water hydrogens, and the 
methyl hydrogens bent away. The ClCCl angle is reduced from 
linear by 2.3 deg; the HCH angle is increased from 120 deg by 
0.9 deg. Relevant internal coordinates are given in Table VIII. 
Chadrasekhar et al.8 found quite a different structure with their 
model. They found the water to hang off of the end of the solute 
molecule near one of the chlorines, similar to the structure at the 
complex. We found no evidence of a similar, asymmetric sta­
tionary point for our model. Morokuma6 found structures of both 
types. These differences should be expected in this kind of study 

4-3.1 

O Cl' * CH3Cl ,'AE= 14.0 

^ A E - - 1 0 . 9 / -4.0 (H1O)-J 

;' ! ^ - 1 5 5 \AE<> 5.4 
-9.4 <H,o)-cr + CH3Ci '> ; .' 

= '< ' -109 ^ •' ' -]0-6 <Hi°h't ' 

'. ' 'AE-20.0 '. , 
\AE = -10.1 ,' ; '.AE'= 10.7 

\-19.5 (HjO)-̂ .' ; 
-21.3 (H;Oycr + CH3CI 

\AE.-9.3 

\-30.6 (H2O)2-^j 

Figure 2. Reaction energetics, on an energy scale (kcal/mol) having the 
zero of energy at infinitely separated H2O + H2O + Cl" + CH3Cl, for 
reaction R2 with n = O, 1, and 2. For all reactions the complex on the 
product side has been omitted from the diagram. 

perturbed monomer. We note that Morokuma6 found, for the 
two-water complex, that both waters interacted most strongly with 
the more negatively charged chlorine. In the structure found by 
Morokuma, the two waters are further apart than in the structure 
found with the present model and do not appear (from the pub­
lished stick diagram) to be in the proper orientation to have a 
water-water hydrogen bond between them. 

The energy of this two-water complex relative to the energy 
of 2H2O + Cl" + CH3Cl is -30.6 kcal/mol, yielding an energy 
of microsolvation for n = 2 of 19.7 kcal/mol. The energy of 
microsolvation for the « = 1 complex going to the n = 2 complex 
is 11.1 kcal/mol; see Figure 2. Again, the larger energy gain 
associated with adding the second water is due to the water-water 

file:///-19.5
file:///-30.6
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Table IX. Internal Coordinates for (H2O)2-[Cl-CH3-Cl]- at the 
Saddle Point 

Table X. Harmonic Frequencies for the Saddle Points for Reaction 
R2 with n = O, 1, and V 

r0H(k or B) = 0.962 A 
rCC[ = 2.291 A 

rCIH = 2.99 A 

/HOH (A or B) = 103.3 deg 
/HMeCHMe (surrounding 

water A or B) = 120.5 deg 
/ClCCl = 177.6 deg 

because there often exist only small barriers to reorientation of 
solvent molecules around a solute, and as a result small energy 
variances between different models of the potential interactions 
may lead to stationary points which differ in a qualitative fashion. 

Energetically (see Figure 2) we find the n = 1 saddle point is 
4.0 kcal/mol lower in energy than H2O + Cl" + CH3Cl or 7.1 
kcal/mol lower than the gas-phase saddle point. The energy 
barrier relative to the reactants of R2 with n = 1 is 5.4 kcal/mol. 

The structure of the saddle point for reaction R2 with n = 2 
is very similar to the n = 1 saddle point; it is pictured in Figure 
1 f. Note that it has C2,, symmetry; the geometry is given in Table 
IX. The energy of the n = 2 saddle point is -10.6 kcal/mol 
relative to H2O + H2O + Cl" + CH3Cl, or 10.7 kcal/mol relative 
to the reactants of R2 for n = 2, or -6.6 kcal/mol relative to the 
n = 1 saddle point. The saddle point configuration has no 
water-water hydrogen bond; consequently the addition of the 
second water gives a smaller energy change than did the addition 
of the first. Considering Figure 2 we see, just from n = 0, n = 
1, and n = 2, that the reaction energetics are tending toward those 
of the aqueous phase reaction. For n = 2, as compared to n = 
0, the well has become more shallow by 1.5 kcal/mol, and the 
barrier height has increased by 7.6 kcal/mol. The n = 2 barrier 
height of 10.7 kcal/mol is 40% of the solution phase barrier of 
26.6 kcal/mol.59 This eventual point of convergence, however, 
requires many more waters. E.g., Kong and Jhon" found, by using 
ab initio calculations combined with a simple model for the water 
potential, that it requires about 50 water molecules to converge 
the calculated barrier height for reaction R2. Finally, in Table 

X, we list the frequencies for the saddle points for the reaction 
R2 with n = 0, n = 1, and n = 2. Of special note is the imaginary 
frequency, which corresponds to the inverse barrier frequency at 
the saddle point. This frequency increases by 115 cm-1 upon 
addition of one water and by an additional 85 cm"1 upon the 
addition of the second water molecule. 

4. Theory 
The approximation that solvation of transition states may be 

treated by equilibrium statistical thermodynamics underlies all 
standard treatments of solvation effects on reaction rates.1-3'59 In 
addition, most treatments make the further assumption that the 
solvent remains in equilibrium with the solute throughout the 
reactive process and, consequently, that only static solvent effects 
are important. However, the mechanics of combining equilibrium 
solvation with transition-state theory (TST) requires further 
study.iii«.".H36-4o Thus, in this section, we discuss new methods 
for applying conventional and generalized30-32,35 TST in the context 
of equilibrium solvation and nonequilibrium solvation. We begin, 
in section 4.1, by presenting variational transition-state theory 
with an extended notation which allows us, in section 4.2, to 
precisely define the nonequilibrium-solvation TST method and 
two distinct equilibrium-solvation TST methods. Details of these 
methods are given in section 5, and in section 6 we apply them 
to the simple cluster reaction R2. 

4.1. Variational Transition-State Theory. Variational tran­
sition-state theory is only useful if, even when the search over 
generalized transition states is restricted enough to be practical, 
we can find a variational transition state which acts as a good 
dynamical bottleneck to reaction. Once we have defined a gen­
eralized transition state—taken here as a hyperplane in coordinate 
space—we assume that any trajectory that crosses this hyperplane 
in the direction from reactants to products will never return to 
reactants. As discussed elsewhere,30,32,35 this formulation of 
generalized transition-state theory for hyperplanes leads to the 

(59) Albery, W. J.; Kreevoy, M. M. Adv. Phys. Org. Chem. 1978, 16, 87. 

* 
H2O (« = 0) 

469i 

206 
206 
220 

947 
947 

1021 
1381 
1381 

1639 

3106 
3309 
3309 

3817 

3922 

* 
(» - 0 

584i 

47 

92 

113 

206 
211 
231 

328 

363 

422 
948 
950 

1023 
1384 
1388 
1701 

3105 
3307 
3309 
3751 

3854 

* 
( « - 2 ) 

669i 
22 
43 
44 
86 

91 

153 

205 
219 
235 
315 

325 

357 
361 
395 
413 
950 
952 

1025 
1389 
1391 
1689 
1699 
3104 
3307 
3308 
3754 
3756 
3856 
3860 

source" 

C/T 
S/T 
S/T 
S/T 
S/T 

S/T 

S/T 

C/T 
C/T 
C/M 
S/T 

S/T 

S/T 
S/T 
S/T 
S/T 
C/M 
C/M 
C/M 
C/M 
C/M 
W/M 
W/M 
C/M 
C/M 
C/M 
W/M 
W/M 
W/M 
W/M 

description6 

asymmetric stretch 
H2O-C-H2O bend 
H2O in plane rock (o) 
H2O in plane rock (c) 
H2O-ClCH3Cl 

stretch (o) 
H2O-ClCH3Cl 

stretch (c) 
ClCH3Cl twist around 

Cl-Cl axis 
Cl-C-Cl bend 
Cl-C-Cl bend 
symmetric stretch 
H2O torsion around 

C-O axis (c) 
H2O torsion around 

C-O axis (o) 
CH 3 -H-O bend (c) 
CH 3 -H-O bend (o) 
CH3-O-H2 bend (c) 
CH3-O-H2 bend (o) 
CH3 rock 
CH3 rock 
CH3 umbrella 
CH3 deformation 
CH3 deformation 
H-O-H bend 
H-O-H bend 
C-H stretch 
C-H stretch 
C-H stretch 
symmetric stretch 
symmetric stretch 
asymmetric stretch 
asymmetric stretch 

"Source designations are the same as those used in Table V, except 
for the additional designator W/M which indicates a mode which ap­
pears in an isolated water monomer. b For n = 2, each pair of S/T 
modes having the same description are mixed to form a concerted/op­
posed pair. Each description is followed by (c) or (o) to designate 
whether in the n = 2 case it is the concerted or the opposed mode. 
c Frequencies are in cm-1. 

following expression for a bimolecular rate constant in terms of 
free energies of activation: 

h (7) 

where kGT is the generalized TST rate constant, k is the Boltzmann 
constant, h is Planck's constant, T is temperature, K0 is the re­
ciprocal of the standard state concentration, s and g specify the 
generalized transition state (see below), A<7?T,° is the standard 
state generalized free energy of activation for the generalized 
transition state defined by s and g, and R is the ideal gas constant. 
In all cases discussed in this article, vibrations are quantized in 
the calculation of AG%T-°(s,g). 

A generalized transition state in 3/V-dimensional space is a 
(3yV-l)-dimensional entity, restricted in this work to be a hy­
perplane. The hyperplane is specified by two values: the distance 
s along the curvilinear minimum energy path (MEP) at which 
it (the MEP) crosses the hyperplane and the unit vector g normal 
to the surface. The "missing degree of freedom" of the generalized 
transition state is a Cartesian coordinate orthogonal to the hy­
perplane. This is called35 the local reaction coordinate (f). 

The generalized free energy of activation is the free energy 
change between the reactants and a generalized transition state 
"species", where this "species" does not include the local reaction 
coordinate. Because, for each prescription we employ for f, we 
define a series of generalized transition states along the reaction 
path, we can evaluate a generalized free energy of activation curve, 
AGjT0(s,g), which is parameterized by s as defined above. In 
order to evaluate the variational transition-state rate constant, 
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the variational^ best generalized transition state in the series 
considered must be chosen. At a fixed temperature, the best 
generalized transition-state species is the one which yields the 
maximum value of the free energy of activation curve,30"32'35 and 
the point at which this best generalized transition state intersects 
the reaction path will be called s?VT. Throughout this paper, we 
shall refer to the specific generalized transition state defined by 
s9VT for a given prescription for g as a "variational transition state". 

It is useful to introduce another formulation30"32,35 of generalized 
transition-state theory which is equivalent to eq 7, in particular 

In eq 8, *R(7} is the reactants partition function per unit volume. 
The quantities which are dependent on the choice of generalized 
transition-state hyperplane are (?°T, the quasi-partition function 
of the generalized transition-state species, and Kmin, its zero of 
energy. The quantity 2°T is referred to as a quasi-partition 
function because it is the partition function for a fictitious species 
which has one degree of freedom, the local reaction coordinate 
f, fixed. 

For gas-phase reactions without solvation or microsolvation, 
it has been found that the minimum energy path (MEP), defined32 

as the path of steepest descents in mass-weighted or mass-scaled60'61 

coordinates connecting the saddle point with reactants, is a good 
coordinate to use both as the reaction path to parameterize a 
sequence of possible generalized transition states and as the local 
reaction coordinate to determine the orientations of these gen­
eralized transition states. If we do this, the set of possible gen­
eralized transition states are orthogonal to the MEP, g is the local 
tangent to the MEP, and Vmin(s) is the value of the potential on 
the MEP at a distance s (along the MEP) from the saddle point. 
Very good estimates of gas-phase rate constants may be obtained 
by using the variational transition state from this set.1'31'35,62 Thus 
the MEP provides one practical prescription for choosing a var­
iational transition state and applying variational TST. We note 
that conventional TST can be seen as a special case of this pre­
scription, one in which the transition state is chosen to be at the 
saddle point (s = 0), rather than at the variational^ optimized 
position, and is orthogonal to the MEP (at J = 0 the MEP is 
tangent to the eigenvector associated with the saddle point im­
aginary frequency). 

The final estimate of the rate constant is K(T) times the min­
imized value of kGT(T,s$yT), where K(T) is a transmission coef­
ficient that accounts for quantum mechanical effects on motion 
along the reaction coordinate. In this section, however, we are 
not concerned with these quantal effects. 

4.2. Equilibrium vs Nonequilibrium Solvation. One cannot apply 
the above prescription without modification to reactions in bulk 
solution, because it is computationally impossible to treat all 
degrees of freedom of the system, solute plus solvent, explicitly, 
except by classical mechanical simulation approximations, which 
do not include the important effects of quantized energy levels 
which are included in eqs 7 and 8. One way to treat bulk solvation 
effects on kinetics, while also treating primary system vibrations 
as quantized, is to conceptually partition the system into two 
parts—a reacting part (often just the solute) called the primary 
system, for which all degrees of freedom are treated explicitly, 
and a bath, which is treated in a reduced dimensionality. The 
simplest way to apply TST to a system in which such a primary 
system-bath separation has been made is to assume that the bath 
makes only energetic contributions to the reaction process, i.e., 
that bath coordinates and variations in the primary system MEP 
due to the effect of the bath are unimportant. Thus, TST is applied 
by using the primary system MEP, in the absence of the bath, 
to define the local reaction coordinate but including the bath 
contribution to the free energy when evaluating the rate con-

(60) Garrett, B. C; Truhlar, D. G. J. Phys. Chem. 1979, 83, 1079. 
(61) Isaacson, A. D.; Truhlar, D. G. J. Chem. Phys. 1982, 76, 1380. 
(62) Truhlar, D. G.; Garrett, B. C. Amu. Rev. Phys. Chem. 1984, 35, 159; 

J. Chim. Phys. 1987, 84, 365. 

stant.3,39 Physically this prescription corresponds to the equilibrium 
solvation assumption, the assumption that the bath molecules 
adjust statistically to motions of the primary system, i.e., that the 
bath always remains in equilibrium with the primary system. We 
note that changes in the reaction rate from gas phase to solution 
which are due to this kind of bath contribution to the free energy 
are called static solvation effects, while those changes in the 
reaction rate which are due to a breakdown of the equilibrium 
solvation assumption are called nonequilibrium or dynamic sol­
vation effects. To test the assumption of equilibrium solvation, 
in the present article we apply it not to a bulk-solvated reaction 
but to a microsolvated one for which we can also perform the 
calculation without a system-bath separation. 

For our tests of the equilibrium solvation model, we will use 
the simplest primary system-bath separation, which is to take the 
solute as the primary system. The first step is to find the equi­
librium solvation reaction path. The solute coordinates on the 
equilibrium solvation path have, by definition, the same values 
as on the gas-phase MEP. The solvent coordinates must then be 
optimized (to find the minimum energy configuration), for fixed 
solute coordinates, at each point on this reaction path. The 
sequence of geometries obtained this way is the equilibrium 
solvation path (ESP). 

In order to evaluate generalized transition-state theory rate 
constants, however, we need to know the generalized free energy 
of activation. As for gas-phase calculations, we will find a good 
generalized transition state by maximizing the free energy of 
activation for a one-parameter series of generalized transition 
states. Our gas-phase prescription, however, cannot be used 
without modification for the equilibrium solvation model. In a 
gas-phase calculation or a nonequilibrium solvation calculation, 
we define the generalized transition state at each point on the MEP 
by making it orthogonal to the MEP, and this guarantees that 
Vmin in the generalized transition state will be at the point where 
the MEP and the generalized transition state (hyperplane) in­
tersect. In an equilibrium solvation calculation, we cannot si­
multaneously make the generalized transition state orthogonal 
to the equilibrium solvation path (ESP) and make the ESP be 
the point of minimum potential energy in the generalized transition 
state, because the gradient of the potential does not point along 
the ESP (i.e., the gradient at a given point on the path is not 
parallel to the tangent to the path at that point). 

There are, however, at least two reasonably straightforward 
choices for dividing surface orientation. The first choice is to make 
the generalized transition state orthogonal to the gradient at each 
point on the ESP, i.e., to use the local gradient to define the local 
reaction coordinate at each point. We note that the local gradient 
vector, at each point on the ESP, only has nonzero components 
for the solute coordinates, because, by definition, all of the solvent 
coordinates are at a stationary point (a minimum) relative to the 
fixed solute coordinates at each point on the ESP. (Of course 
this does not contradict the fact that the ESP has a solvent 
component since we are distinguishing between the gradient on 
the ESP and ESP itself.) With this choice of dividing surface, 
the ESP will intersect each generalized transition-state hyperplane 
at the point of minimum potential energy in that generalized 
transition state. The second choice for generalized transition-state 
orientation is to make the hyperplane orthogonal to the gas-phase 
gradient, i.e., the gradient of the solute potential in the absence 
of the solvent interactions at each point on the ESP. One effect 
of this second choice is that the local reaction coordinate is re­
stricted to the solute degrees of freedom, since these are the 
coordinates of the gas-phase MEP. We will employ both of these 
choices for full calculations. These two approaches will be called 
the "solvent influenced" local reaction coordinate method and the 
"gas-phase" local reaction coordinate method, respectively. 

A third possibility would be to take the hyperplane locally 
orthogonal to the ESP, but this requires more extensive calculations 
and was not pursued. However, it might be interesting to study 
in future work. 

Finally, we note that "conventional transition-state theory" does 
not appear to have an unambiguous definition in the context of 
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equilibrium solvation, because there is no true saddle point (where 
all first derivatives are zero) on the ESP, and, in addition, the 
point on the ESP which corresponds to the gas-phase saddle point 
will not necessarily be the point of highest potential energy on 
the ESP, although it may often be. Even if the gas-phase saddle 
point did correspond to the highest point on the ESP, one would 
still have to ask whether the "conventional" transition state should 
be placed orthogonal to the imaginary frequency of the full system, 
to the imaginary frequency of the gas-phase saddle point, or to 
the ESP itself. 

With these definitions we can address the question of equilib­
rium vs nonequilibrium solvation. Physically, equilibrium solvation 
might be expected to be a poor assumption when the time scale 
for motion along the reaction path is much faster than the time 
scale for solvent reorganization, but the ratio of these time scales 
is not usually clear. If the reaction path time scale were much 
faster than the solvent reorganization one, the reactivity of a given 
trajectory would be largely dependent upon the initial configuration 
of the solvent, and, since every trajectory which crosses the 
generalized transition-state hyperplane is assumed to be reactive, 
a generalized transition state which does not account for this 
configuration will overcount the number of reactive trajectories. 
This effect is referred to as solvent-induced recrossing (of the 
generalized transition state). It is sometimes assumed that re-
crossing of the generalized transition state in an equilibrium 
solvation calculation is evidence of solvent-induced recrossing,12-13'21 

i.e., a breakdown of the equilibrium solvation assumption. 
However, in order to be sure of this, one must ascertain whether 
the definition of generalized transition state that is used provides 
a good dynamical bottleneck for the equilibrium solvation reaction; 
if this proves true, then additional recrossing effects may be 
attributable to solvent-induced recrossing. Thus, it is important 
to distinguish recrossing effects due to a poor choice of dynamical 
bottleneck for the equilibrium solvation reaction from the 
breakdown of that assumption itself. We will use variational 
transition-state theory to accomplish this. 

5. Methods 
In order to distinguish between different possible causes of 

recrossing effects we consider the simplest case where a system-
"bath" separation can be made—that of a reacting solute in the 
presence of one solvent molecule—and we evaluate the variational 
TST rate constant by a number of different methods. We consider 
first a nonequilibrium solvation calculation, where we make no 
system-bath separation, we treat all of the coordinates of the 
system explicitly, and we use our gas-phase prescription30-32'35 for 
choosing the variational transition state. We then consider two 
calculations based on the ESP. The first of these calculations takes 
the local reaction coordinate to be the gradient of the solvent-
influenced solute, i.e., to be the gradient of the full potential surface 
at each point on the ESP, whereas the second defines the local 
reaction coordinate to be the gradient of the unperturbed solute, 
i.e., the gas-phase gradient evaluated in the absence of the solvent. 
In all three methods with use temperature-dependent variational 
transition states. For the nonequilibrium solvation calculation 
this is the standard canonical variational TST (CVT) prescrip­
tion.30"32,35 Finally, we also perform nonequilibrium solvation 
calculations for the case of two solvent molecules, because we are 
also interested in the trends in cluster reaction rates as the number 
of water molecules is increased incrementally. 

For the nonequilibrium solvation calculations, with n = 1 and 
n = 2, we consider both conventional transition-state theory and 
CVT.30"32'35 As in our gas-phase study of this reaction,41 we 
consider tunneling corrections to the CVT rate constants calculated 
by the minimum energy path semiclassical adiabatic ground-state 
method (MEPSAG)32,35'63 and by the small curvature semiclassical 
adiabatic ground-state method (SCSAG).64'65 The latter is the 

(63) Garrett, B. C; Truhlar, D. G.; Grev, R. S.; Magnuson, A. W. J. Phys. 
Chem. 1980, 84, 1730; 1983, 87, 4554E. 

(64) Skodje, R. T.; Truhlar, D. G.; Garrett, B. C. J. Phys. Chem. 1981, 
85, 3019. 

most reliable of the methods considered here. 
For all of the calculations, we used the POLYRATE computer 

program (version 1.5),66 although for the equilibrium solvation 
calculations we required the modifications discussed below. For 
all calculations discussed we calculated the vibrational partition 
functions by the quantum mechanical harmonic independent-
normal-mode approximation,32 and we calculated the rotational 
partition functions classically. We use the reduced mass \i = 1 
amu in all cases for mass scaling32 the coordinates. 

For the equilibrium solvation calculations, we evaluated the 
ESP from the gas-phase IVf EP, by minimizing the solvent coor­
dinates for fixed solute coordinates at a grid of points (defined 
by s) on the gas phase MEP. We parameterize the free energy 
of activation curves for the equilibrium solvation calculations by 
the value of the point s on the gas-phase MEP. The ESP itself 
then consists of the combination of the solute coordinates and the 
optimized solvent coordinates at each point s. 

For the solvent-influenced local reaction coordinate method, 
the partition functions of the generalized transition state are 
defined in the usual fashion;32 to evaluate the vibrational partition 
functions on the reaction path the full local gradient at each point 
5 (in this case on the ESP) is projected out of the vibrational 
subspace in order to determine the frequency spectrum in the 
generalized-transition-state hyperplane. In the solvent-influenced 
local reaction coordinate method, a projection operator is also used 
at 5 = 0 (which corresponds to the gas-phase saddle point), because 
this is not a stationary point on the ESP. The rotational partition 
functions are based on the moment of inertia for the geometry 
of the solute plus solvent on the ESP. 

For the gas-phase local reaction coordinate equilibrium solvation 
calculation, we again project a degree of freedom from the vi­
brational subspace to determine the generalized-transition-state 
frequency spectrum at each value of s; but in this case we use the 
gradient of the gas-phase MEP at this point, determined with the 
water and water-solute potentials set to zero. At 5 = 0 we remove 
the vector associated with the gas-phase imaginary frequency, 
which is tangent to the gas-phase MEP at this point, since the 
gas-phase gradient is zero at this point. The rotational partition 
functions are treated as in the solvent-influenced local reaction 
coordinate method. 

In the nonequilibrium solvation calculations and in the sol­
vent-influenced local reaction coordinate method, removing the 
local reaction coordinate from the generalized transition state (at 
some value of s) guarantees that all the degrees of freedom re­
maining in the generalized transition state will be at a stationary 
point at the point where they intersect the reaction path, and Kmin 
in eq 8 is just the value of the full potential energy surface at 5 
on the path. Because we do not remove the full gradient of the 
potential energy function from the dividing surface in the gas-phase 
local reaction coordinate method, there may be a nonzero gradient 
in the generalized transition-state theory hyperplane at the point 
where it intersects the ESP, and we must find the correction, 8 V, 
to the value of the potential energy function on the ESP, FESP, 
in order to evaluate Kmin in eq 8 by 

Kmi„= V^'is) - 6V(s) (9) 

This is carried out in the harmonic independent normal mode 
approximation. 

6. Results 
6.1. Effect of Microsolvation on Reaction Dynamics. For the 

reaction rate calculations presented in this section, we do not 
assume that the water molecules stay in equilibrium with the solute 
during the course of the reaction, and hence we refer to these 
results as nonequilibrium solvation rate constants. The none-

(65) Truhlar, D. G.; Isaacson, A. D.; Skodje, R. T.; Garrett, B. C. / . Phys. 
Chem. 1982, 86, 2252; 1983, 87, 4554E. 

(66) Isaacson, A. D.; Truhlar, D. G.; Rai, S. N.; Steckler, R.; Hancock, 
G. C; Garrett, B. C; Redmon, M. J. Comput. Phys. Commun. 1987,47, 91, 
Isaacson, A. D.; Truhlar, D. G.; Rai, S. N.; Hancock, G. C; Lauderdale, J. 
G.; Truong, T. N.; Joseph, T.; Garrett, B. C; Steckler, R. University of 
Minnesota Supercomputer Institute Research Report 88/87, September 1988. 
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Table XI. Calculated Rate Constants (in cm3 molecule"1 s"1) for 
Reaction R2 with One or Two Waters 

Table XIII. Variational TST Rate Constants (in cm3 molecule"' s"') 

7-(K) 
conventional 

TST CVT 
CVT/ 

MEPSAG 
CVT/ 
SCSAG 

250 
300 
500 

1000 

250 
300 
500 

1000 

7.2 (-19) 
6.4 (-18) 
8.4 (-16) 
9.7 (-14) 

4.8 (-22) 
2.1 (-20) 
7.5 (-17) 
1.2 (-13) 

n = 1 
7.1 (-19) 
6.3 (-18) 
8.2 (-16) 
9.4 (-14) 

n = 2 
4.7 (-22) 
2.0 (-20) 
7.3 (-17) 
1.2 (-13) 

1.1 (-18) 
8.3 (-18) 
9.1 (-16) 
9.6 (-14) 

7.2 (-22) 
2.7 (-20) 
8.1 (-17) 
1-2 (-13) 

1.6 (-18) 
1.1 (-17) 
1.0 (-15) 
9.8 (-14) 

1.1 (-21) 
3.7 (-20) 
9.0 (-17) 
1.2 (-13) 

Table XII. Calculated CVT/SCSAG Rate Constants k (in cm3 

molecule"1 s"1) and Arrhenius Activation Energies E1 (in kcal/mol) 
for Reaction Rl and for Reaction R2 with One and Two Water 
Molecules 

7-(K) 

200 
250 
300 
400 
500 

1000 

Rl 

k 

4.1 (-15) 
1.4 (-14) 
3.5 (-14) 
1.4 (-13) 
3.6 (-13) 
4.2 (-12) 

E1 

2.2 
2.6 
3.0 
3.6 
4.1 
6.0 

R2(n = 

k 

1.2 (-19) 
1.6 (-18) 
1.1 (-17) 
1.6 (-16) 
1.0 (-15) 
9.8 (-14) 

D 

4.8 
5.5 
6.0 
6.9 
7.7 

11.2 

R2(n = 

k 

8.4 (-24) 
1.1 (-21) 
3.7 (-20) 
4.1 (-18) 
9.0 (-17) 
1.2 (-13) 

2) 

E, 

9.3 
10.1 
10.7 
11.8 
12.8 
16.6 

quilibrium solvation rate constants are our best estimates of the 
true reaction rate constants. 

Considering the calculated rate constants given in Table XI, 
we observe the same trends we saw41 in the gas-phase reaction 
Rl. Namely, there is little difference between the conventional 
TST rate constants and the CVT rate constants, and the 
CVT/SCSAG method predicts a tunneling correction which is 
roughly twice that predicted by the CVT/MEPSAG method. As 
discussed in ref 41, the first trend shows that vibrational effects 
on the location of the dynamical bottleneck are small, while the 
second trend indicates that there is significant curvature coupling 
between the reaction coordinate and the generalized normal modes 
orthogonal to the reaction path. 

In order to illustrate the former point, we show the generalized 
free energy of activation curves at 300 K for reaction Rl and for 
reaction R2 with n = 1 and with n = 2 in Figure 3. For each 
reaction, the CVT transition state occurs at the maximum of the 
free energy curve, which varies from s?^1" = 0.058 a0 for the 
gas-phase reaction to s?^ = 0.050 a0 for n = 1 and finally to s?VT 

= 0.046 a0 for the n = 2 reaction. 
Table XI also shows, by dividing column 5 by column 3, that 

the tunneling effect is essentially independent of the number of 
waters, n = 1 or 2, at all four temperatures. 

In Table XII we present rate constants and Arrhenius activation 
energies calculated by the CVT/SCSAG method. We present 
results for reaction R2 both with n = 1 and n = 2, and we also 
present the results for the gas-phase reaction Rl for comparison. 
At 200 K the rate for the n = 1 reaction is four orders of mag­
nitude slower than the corresponding gas-phase rate, while the 
n = 2 reaction is over eight orders of magnitude slower than its 
gas-phase analogue. At 300 K, the differences have decreased 
to three orders of magnitude for the addition of one water and 
to not quite six orders of magnitude for the addition of two waters. 
These trends continue until at 1000 K the rates for reaction R2 
with n = 1 and n = 2 are nearly the same, and these rates are 
only about a factor of 40 slower than that for their gas-phase 
analogue, reaction Rl . 

The predicted trends in reactivity are the same as those seen 
in experimental work on similar microsolvated reactions. Bohme 
and Raskit25 and Henchman et al.27,28 have both measured reaction 
rates at room temperature for the SN2 reaction (H2O)n-OH" + 
CH3Y (and/or its deuterated analogue) where Y is Cl" or Br", 
and n ranges from 0 to 3, and Bohme and Raskit26 have measured 

for Reaction R2 with One Water (n = 
Assumptions 

) Calculated under Different 

T-(K) 

200 
300 
500 

1000 

nonequil ibrium 
solvation 

3.2 (-20) 
6.3(-
8.2 (-
9.4 (-

-18) 
-16) 
-14) 

equilibrium solvation 

solvent-influenced local 
reaction coordinate 

1.4 (-
1.9 (-
1.9(-
1.7 (-

-19) 
-17) 
-15) 
-13) 

gas-phase local 
reaction coordinate 

3.4 (-20) 
6.8 (-
9.0 (-
1.0 (-

-18) 
-16) 
-13) 

rates for the reaction (D2O)n-P + CH3Y, where Y is again Cl" 
or Br". In all cases, the addition of each additional solvent 
molecule significantly decreased the reaction rate, although not 
always monotonically. Bohme and Raskit25,26 found that less 
exothermic reactions were slowed more rapidly than more exo­
thermic reactions. In all H2O analogue reactions they studied, 
they found over a three-order-of-magnitude decrease in the rate 
from n = 0 to « = 3. For the most similar reaction to the one 
studied here, (D2O)n-F" + CH3Cl, the reaction rate was observed 
to drop two orders of magnitude from the gas phase to n = 1, and 
with the addition of another solvent molecule it became immea­
surably slow, indicating a drop of more than another order of 
magnitude. 

For these exothermic reactions both studies25'27,28 for the OH" 
as nucleophile with n = 1 showed that the unsolvated ion, Y", was 
formed preferentially over the solvated ion. Bohme et al. found 
that this outcome is correlated with exothermicity; they found more 
solvated product ions in less exothermic reactions.25 For example, 
in the reaction of (H2O)-OH" with CH3Br they found only 10% 
solvent retention,25 whereas for the reaction of (D2O)-F^ with 
CH3Cl, solvated ions were the dominant product.26 Henchman 
et al.29 use the significant formation of Br" as evidence that the 
(H2O)-OH" + CH3Br reaction definitely does not proceed by 
solvent transfer followed by Walden inversion and likely does not 
proceed in a concerted fashion (followed by dissociation of excited 
(H2O)-Br); rather, they suggest that it proceeds by Walden 
inversion followed either by solvent transfer or by solvent disso­
ciation (presumably concurrently with the Br" dissociation), with 
the solvent dissociation pathway dominating. They argue that 
the sequential pathway is preferred over the concurrent pathway, 
because the concurrent transition state will be entropically less 
favorable. Because the reaction we have studied is thermoneutral, 
and no large amount of excess energy is available, the unsolvated 
ion is less likely to be a significant product, independent of reaction 
pathway. An efficient solvent transfer has been observed recently 
by Baer et al.67 in the approximately thermoneutral reaction 
RO-(HOR) + HCOOR' — (R'0")(HOR) + HCOOR. 

The question whether the pathway is concurrent or sequential 
may depend on the number of water molecules, and—in 
addition—there is not a precise distinction since the two types of 
mechanism may be combined in intermediate cases. Our potential 
model exhibits concurrent motions of water transfer and solute 
inversion at the saddle point; yet at a point on the MEP where 
the solute is nearly at the geometry of the ion-dipole complex, 
the water has moved only as much as the leaving chlorine, and 
it still must rotate to the far side of the leaving chloride, a much 
larger amplitude motion, in order to reach the potential minimum. 

6.2. Test of Equilibrium Solvation Models. As discussed in 
section 4, we have evaluated the reaction rate for reaction R2 with 
one water molecule (n = 1) under the assumption of equilibrium 
solvation, and we have used two models for the generalized 
transition state which differ in the method used to choose the 
orientation of the hyperplane that divides reactants from products. 
The variational TST rate constants for both equilibrium solvation 
calculations as well as those for the nonequilibrium solvation 
calculations are given in Table XIII. The two equilibrium sol­
vation calculations are distinguished by the nature of the local 

(67) Baer, S.; Stoutland, P. 0.; Brauman, J. 
///,4097. 

I. J. Am. Chem. Soc. 1989, 
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reaction coordinate used to define the generalized transition state, 
i.e., the solvent-influenced local reaction coordinate or the gas-
phase local reaction coordinate, as described in section 4.2. 

The results in Table XIII are quite striking. We see immediatey 
that the two equilibrium methods of treating solvation give sig­
nificantly different results. We see only a very small, possibly 
insignificant, difference between the nonequilibrium-solvation rate 
constants and the equilibrium-solvation ones calculated with the 
gas-phase local reaction coordinate. Specifically, the extra re-
crossing at the equilibrium solvation variational transition state 
increases the rate constant by less than 10% compared to the full 
variational calculation over the whole 200-1000 K range. For 
the solvent-influenced local reaction coordinate though, we see 
a large increase in the equilibrium solvation rate constants, as 
compared to the nonequilibrium solvation rate constants. Re-
crossing of the variational transition state yields an increase in 
the computed rate constant by a factor of over 4 at 200 K, a factor 
of more than 3 at 300 K, and factors of 2.3-1.8 at 500-1000 K. 

Since we can find a good variational transition state corre­
sponding to equilibrium solvation, we conclude that nonequilibrium 
solvation effects are small for this reaction and that the gas-phase 
local reaction coordinate is also reasonable in the presence of 
hydration. We also conclude that the solvent-influenced local 
reaction coordinate does not provide a good basis for defining 
transition states. 

The first conclusion, that nonequilibrium effects are small, is 
a central result of this study. In assessing the significance of this 
result, it is important to stress that the solvent molecule is strongly 
coupled to the reaction process. For example, the imaginary 
frequency at the saddle point on the full-dimensionality potential 
surface for the reaction with one water is 584i cm-1, which is a 
25% increase over the imaginary frequency at the gas-phase saddle 
point, which is 469i cm"1. Also, the coordinates of the none­
quilibrium solvation MEP for this reaction show that in the barrier 
region the extent of motion of the water molecule is of the same 
magnitude as the motion of the solute atoms. (Hwang et al.17 

also found, in a study involving 60 water molecules, that the solvent 
motion is of the same magnitude as that of solute atoms.) The 
picture of the descent from the saddle point that emerges in the 
present work is that as one CCl bond length shortens, the other 
one lengthens, the methyl hydrogens move toward the leaving 
chlorine, and the water molecule (see Figure Ie) remains nearly 
a constant distance from the leaving chlorine. This indicates that, 
because of the rapid charge switching at the saddle point, the water 
molecule is quickly more strongly associated with the leaving 
chlorine than with the original hydrated chlorine. Thus, we learn 
that strong solute-solvent coupling does not necessarily mean that 
nonequilibrium solvation effects are important; rather, the im­
portance of these effects will depend also on dynamic effects such 
as the relative time scales of the solute reactive motion and the 
bath motion. 

The conclusion that the solvent-influenced local-reaction-co­
ordinate method provides a poor variational transition state for 
the equilibrium solvation calculations, while the gas-phase gradient 
method provides a good variational transition state, is also worthy 
of discussion. On first thought one might expect exactly the 
opposite result. It might seem in the absence of calculations that 
the solvent-influenced local reaction coordinate would be more 
relevant to the reaction in the presence of the solvent than the 
gas-phase local reaction coordinate would be. However, for simple 
reactive systems in the gas phase Koeppl68 has studied the effect 
of using different local reaction coordinates to define the orien­
tations of generalized transition states at 5 = 0, and he found that, 
when the generalized-transition-state vibrations are defined by 
their character in the near vicinity of the reaction path, the best 
local reaction coordinate to use is the vector associated with the 
imaginary frequency at the saddle point, which is tangent to the 
MEP at this point (s = 0). He also found that using a more 
globally defined reaction path to define the local reaction coor­
dinate at s - 0 yielded good results in some cases. Gas-phase 

(68) Koeppl, G. W. J. Am. Chem. Soc. 1974, 96, 6539. 
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Figure 3. Free energy of activation curves parameterized by the distance 
along the reaction path s for the gas-phase calculations and for the 
nonequilibrium solvation variational transition state theory calculations: 
solid line is n = 2, short dashed line is n = 1, long dashed line is n = 0. 

calculations which consider generalized transition states with s 
^ 0, but with the MEP defining the local reaction coordinate, 
have shown that this choice of local reaction coordinate is usually 
quite good.31'62 Thus, by analogy to gas-phase reactions, the best 
generalized transition states are expected to be those which are 
orthogonal to the reaction path, i.e., for which the reaction path 
is the local reaction coordinate. For a nonequilibrium solvation 
calculation the MEP, which is the reaction path, is defined as the 
local reaction coordinate, making the generalized transition state 
orthogonal to the MEP. Thus, in that case, the reaction path, 
the MEP, and the local reaction coordinate coincide. For an 
equilibrium solvation reaction, we define the ESP as the reaction 
path. The solvent-influenced gradient, which we choose as the 
local reaction coordinate in one calculation, does not necessarily 
point along the ESP; in reality, it tends to point partly in the 
direction from the ESP to the MEP of the full-dimensionality 
potential and partly in the direction along the ESP. Which 
direction forms the greater component of the solvent-influenced 
gradient, and thus of the solvent-influenced local reaction coor­
dinate, varies along the ESP; in the vicinity of the point on the 
ESP which corresponds to the gas-phase saddle point, this gradient 
is dominated by the component which points toward the true MEP. 

The gas-phase gradient, which defines the gas-phase local re­
action coordinate, is not guaranteed to point along the ESP either, 
but in the reaction considered here it appears to do so. In fact, 
it seems plausible that the degree to which the gas-phase gradient 
does point along the ESP will generally be correlated to the validity 
of the equilibrium solvation assumption for a given reaction. 
However, more work is required even to know if the method 
employed here will provide good variational transition states for 
other reactions (or for R2 with n > 1) under the equilibrium 
solvation assumption. 

In Figure 4 we present the free energy of activation curves at 
300 K for the nonequilibrium solvation method and for both 
equilibrium solvation methods. These curves are parameterized 
by distance along the reaction path, s. For all calculations 5 is 
distance along the MEP through the primary system (solute) 
mass-scaled coordinate system. Figure 4 illustrates the similarity 
between the nonequilibrium solvation results and the gas-phase 
local reaction coordinate equilibrium solvation results. The so­
lute-influenced local reaction coordinate method yields quite a 
different free energy of activation curve. At points in the near 
vicinity of 5 = 0 this curve is undefined in the harmonic ap­
proximation because one of the frequencies of the generalized 
transition state at these s values is imaginary. This indicates that, 
at these s values, the ESP corresponds to a ridge in potential 
energy, rather than a valley, along the coordinate associated with 
this frequency, a situation which would yield a high density of 
states and a low value for Kmin; consequently, the curvature in the 
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Table XIV. Variational Transition States at 300 K for Reaction R2 with One Water (n = 1) for Different Methods of Calculation" 

C 
Cl 
H 
H 
H 
Cl' 
H 
H 
O 

C 
Cl 
H 
H 
H 
Cl' 
H 
H 
O 

nor 

X 

0.000 
-0.088 

2.025 
-0.997 
-0.997 
-0.088 
-4.866 
-4.865 
-5.996 

-0.000 
0.020 
0.001 

-0.001 
-0.001 
-0.019 

0.000 
-0.000 

0.000 

equilibrium solvation4 

y 

0.000 
0.000 
0.000 

-1.759 
1.759 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 

-0.001 
0.001 
0.000 
0.000 
0.000 
0.000 

Z 

0.000 
4.354 
0.013 
0.015 
0.015 

-4.323 
1.437 

-1.410 
0.013 

0.822 
-0.325 
-0.001 
-0.001 
-0.001 
-0.466 
-0.002 
-0.002 
-0.010 

solvent-influenced 

equilibrium solvation 

local reaction coordinate' 

X y 

Coordinates 
0.000 
0.000 
2.020 

-1.010 
-1.010 

0.000 
-4.788 
-4.892 
-5.969 

0.007 
0.075 

-0.027 
-0.065 
-0.065 

0.076 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 

-1.749 
1.749 
0.000 
0.000 
0.000 
0.000 

i 
0.000 0.000 
0.000 
0.064 

-0.064 
0.000 
0.000 
0.000 
0.000 

Z 

0.000 
4.431 
0.079 
0.079 
0.079 

-4.263 
1.685 

-1.162 
0.301 

0.790 
-0.225 
-0.007 
-0.007 
-0.007 
-0.545 

0.000 
0.000 
0.000 

gas-phase 
local reaction coordinate1' 

X 

0.000 
0.000 
2.022 

-1.011 
-1.011 

0.000 
-4.838 
-4.838 
-5.968 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

y 

0.000 
0.000 
0.000 

-1.751 
1.751 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

Z 

0.000 
4.350 
0.000 
0.000 
0.000 

-4.350 
1.425 

-1.425 
0.000 

0.822 
-0.403 
-0.006 
-0.006 
-0.006 
-0.403 

0.000 
0.000 
0.000 

"Although s measures distance in mass-scaled coordinates, we convert the geometries and vector components in this table to unsealed Cartesians 
to facilitate interpretation. bs. "(a0) = 0.05 a0 HaO) = O^a 0 . '(a0) =0.00a„. 
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Figure 4. Same as Figure 3, except for the reaction with one water and 
for (solid line) the nonequilibrium solvation calculation, (short dashed 
line) the gas-phase local reaction coordinate equilibrium solvation cal­
culation, and (long dashed line) the solvent-influenced local reaction 
coordinate equilibrium-solvation calculation. 

free energy of activation curve, which indicates that the maximum 
of this curve is not in this undefined region, is correct, and going 
beyond the harmonic approximation so that we could evaluate 
the free energy of activation in this region would not change our 
results. We note that the ESP can correspond to a potential 
maximum (in some number of dimensions) in the generalized 
transition state because the generalized transition-state surface 
is defined over all but one degree of freedom, while the mini­
mization of the solvent coordinates is performed with fixed solute 
coordinates. 

An explicit comparison of the variational transition states (at 
300 K) for the three different methods—nonequilibrium solvation, 
solvent-influenced local reaction coordinate equilibrium solvation, 
and gas-phase local reaction coordinate equilibrium solvation—is 
given in Table XIV. Each transition state is completely defined 
by the set of Cartesian coordinates which give the geometry at 
s, on the reaction path and the local reaction coordinate vector 
g at this point; the z axis is the Cl-C-Cl' axis. For the canonical 
variational transition state for each method we have listed s9VT, 
the Cartesian coordinates at s?VT (in a0), and g at s?VT. The 

variational transition state for the solvent-influenced local reaction 
coordinate calculation occurs much further along the reaction path, 
at s?VT = 0.27 a0, than do the variational transition states for the 
other two methods, which have s?VT near the saddle point (s = 
0), and this is reflected in the coordinate sets. At the solvent-
influenced local reaction coordinate variational transition state, 
the water molecule (last three rows of the coordinates in Table 
XIV) is shifted 0.3 a0 away from the carbon toward the leaving 
chlorine (Cl), and the chlorines are shifted a comparable amount 
from their symmetric saddle point configuration; the other two 
transition-state structures show a large amount of symmetry 
around z = 0. Another important aspect of the transition-state 
structures is that the nonequilibrium solvation transition-state 
structure shows a nonzero x component for both chlorines, whereas 
the equilibrium solvation transition-state structures do not. This 
is because the fully optimized one-water saddle point has a bent 
Cl-C-Cl structure (see section 3.3), whereas the gas-phase saddle 
point has a collinear Cl-C-Cl structure. For reaction R2, however, 
the rates appear to be governed by the orientation of the transition 
state, which is defined by the local reaction coordinate g. 

One important point about the local reaction coordinates is that 
for the equilibrium solvation transition states the local reaction 
coordinate has zero magnitude in the solvent coordinates by 
definition. These coordinates have small magnitudes in the 
nonequilibrium solvation local reaction coordinate as well, despite 
the fact that for noninfinitesimal motions the water motion is of 
the same order of magnitude as the chlorine motions (compare 
the z coordinates of the equilibrium solvation path at s = 0.27 
ao with those Ms = 0.00 B0; the z-coordinate motion is quite similar 
on the nonequilibrium solvation path). The major components, 
the solute z-coordinate components, are of similar size for all three 
local reaction coordinates. Comparing the nonequilibrium sol­
vation local reaction coordinate with the equilibrium solvation 
gas-phase local reaction coordinate, we see little difference, with 
the variances localized to the x coordinates which are small in 
the first case but zero in the latter. The equilibrium solvation 
solvent-influenced local reaction coordinate has significantly larger 
x components than the other two local reaction coordinates, with 
difffering signs. These components correspond to the ClCCl' bend 
and in-plane methyl hydrogen distortions. These are exactly the 
motions by which the gas phase and the fully optimized one-water 
saddle point differ from each other, supporting the idea that the 
equilibrium solvation solvent-influenced local reaction coordinate 
includes a significant component in the direction from the ESP 
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Table XV. Harmonic Frequencies in cm"1 for the Generalized 
Transition State at s = 0.18 a0 for Three Different Calculations 

equilibrium solvation 
nonequilibrium 

solvation 
47 
92 

114 
205 
212 
238 
327 
363 
423 
947 
949 

1026 
1384 
1388 
1702 
3105 
3307 
3309 
3751 
3854 

solvent-influenced 
local reaction coordinate 

42 
89 

118 
208 

(165)" 
230 
325 
367 
419 
947 
950 

1025 
1384 

(1133)" 
1699 
3037 
3307 
3308 
3751 
3855 

gas-phase 
local reaction coo 

43 
92 

118 
208 
218 
231 
325 
367 
419 
947 
950 

1026 
1384 
1389 
1700 
3105 
3307 
3309 
3751 
3855 

"Parentheses indicate frequencies which are changed significantly 
from the nonequilibrium solvation values. For these modes, corre­
spondence was determined by an eigenvector analysis. 

to the nonequilibrium solvation MEP. 
Table XV lists the frequencies of the modes in the generalized 

transition state defined by 5 = 0.18 a0 for each of the three 
methods. As in the rate constant results, there are only small 
changes between the frequencies of the nonequilibrium-solvation 
generalized transition state and those of the equilibrium-solvation 
gas-phase-local-reaction-coordinate generalized transition state 
at 5 = 0.18 a0, indicating that indeed there is a similarity between 
the sequence of generalized transition states for the two methods, 
at least in the barrier region. The significant differences in the 
frequency spectra of the solvent-influenced local reaction coor­
dinate method and the nonequilibrium solvation method are 
confined to two modes. The first of these is the ClCCl bend in 
the plane of the water molecule. The frequency for this mode 
in the solvent-influenced local reaction coordinate calculation is 
165 cm"1, which is 22% lower than the 212-cm"1 frequency of the 
nonequilibrium calculation. The second is, in the nonequilibri­
um-solvation calculation, a mode which involves a scissor motion 
of the two methyl hydrogens which are closest to the water 
molecule and has a frequency of 1388 cm"1. In the solvent-in­
fluenced local reaction coordinate equilibrium solvation calculation, 
this mode contains a significant asymmetric stretch component 
which is not present in the nonequilibrium solvation eigenvector, 
and the frequency is 1133 cm"1, 18% lower than the nonequilib­
rium solvation value. We also see a mixing of the asymmetric 
stretch with another methyl hydrogen mode, which involves both 
the HCH bend of the previous mode as well as a stretch of the 
other CH bond length, in the solvent-influenced local reaction 
coordinate results, but the frequency lowering of 68 cm"1 is only 
a 2% change from the nonequilibrium solvation value of 3105 cm"1. 
The configuration of the solute on the MEP and the solute on the 
ESP differ by a ClCCl bend and an expansion of the HCH angle 
which is bisected by the water monomer; the reaction path motion 
near the saddle point is largely the solute asymmetric stretch. 
These results clearly indicate that, indeed, the solvent-influenced 
generalized transition state is defined by a local reaction coordinate 
which is some combination of a vector which points from the ESP 
to the MEP and a vector which points along the ESP path toward 
reactants. 

7. Discussion 
From the preceding analysis (section 6.2), it can be seen that 

the calculated rate constant is lowered by rotating the generalized 
transition-state hyperplane so that it includes higher frequency 
modes, leaving lower frequency motion along the local reaction 

coordinate. High-frequency motion corresponds to fast motion 
of light particles (and short distances in mass-scaled coordinates), 
while low-frequency motion corresponds to slow motion of heavy 
particles (and long distances in mass-scaled coordinates). Thus, 
the rate constant decreases when the generalized transition state 
is rotated such that faster motions lie in the transition state, and 
consequently relatively slower motions occur along the local re­
action coordinate. The variationally optimal transition state, which 
minimizes the calculated rate constant, will thus be oriented such 
that relatively slow motions are included in the local reaction 
coordinate. Therefore if slow motions are excluded from the local 
reaction coordinate, the generalized transition-state theory rate 
constant will be too high. In effect, excluding slow motions from 
the local reaction coordinate will cause recrossings of a transition 
state defined by this local reaction coordinate. Thus, if the slow 
time scale motions are motions of bath molecules which are not 
being used in defining the local reaction coordinate because of 
an equilibrium solvation approximation, they would be expected 
to induce recrossings of the transition state. However, these 
recrossings can be reduced or eliminated by including some or 
all of these slow motions in the local reaction coordinate, i.e., by 
rotating the generalized transition state into the solvent degrees 
of freedom. Within this formulation, then, nonequilibrium-sol­
vation effects are those recrossings which can be eliminated only 
by including solvent motions in the local reaction coordinate. 
Recrossing effects which can be eliminated by changing the 
orientation of the local reaction coordinate within the solute co­
ordinate space do not constitute a breakdown of the equilibrium 
solvation assumption; rather they indicate a poor choice of dividing 
surface within this framework. This shows how the formalism 
presented here provides a way to quantify the qualitative notion 
that slow-solvent motions and fast reaction-coordinate motion 
cause the equilibrium solvation approximation to break down. In 
addition it shows that the extent to which solvation is judged to 
be equilibrated or not depends on the choice of the local reaction 
coordinate. 

The above argument also leads to new insights into the defi­
ciencies of the simple time scale arguments; in particular it does 
not include the coupling strengths between various motions or the 
relation between the local reaction coordinate and the global 
reactive motion in which one is interested. Thus, orienting the 
transition state orthogonal to the lowest frequency mode will not 
provide a good bottleneck to reaction if this mode is truly a 
spectator to the reaction of interest. The strength of the coupling 
between slow time scale motions and the mode which most directly 
couples reactants to products will determine the degree to which 
these slow motions should be included in the local reaction co­
ordinate. Much work is necessary, however, before we will un­
derstand these relationships in detail. 

Several previous studies of the aqueous-phase analogue of re­
action Rl have been reported. In such cases the number of bath 
coordinates make it impractical to find the ESP in the manner 
used here, and so both the reaction coordinate and the local 
reaction coordinate were defined only in terms of solute coordi­
nates, not including bath coordinates. In one approach, because 
separable mode approximations based on a single potential min­
imum may be very poor for systems containing many solvent 
molecules, eq 7 was used [rather than eq 8] to evaluate the rate 
constant, and statistical techniques were used to consider the effects 
of solvation on the free energy of activation. In particular, 
Chandrasekhar et al.8 used Monte Carlo techniques to evaluate 
the free energy along a reaction path, and Chiles and Rossky21 

and Huston et al.21 have used an extended RISM method to 
evaluate the free energy along a slightly different reaction path. 
Bergsma et al.12 have gone to yet a third formulation of TST, that 
of trajectories crossing a dividing surface, i.e., a generalized 
transition state. They used molecular dynamics to choose initial 
conditions for the trajectories, so that the ensemble of trajectories 
considered represents an equilibrium distribution at the generalized 
transition state for a given temperature. In order to understand 
the relevance of our results to such studies, we would have to 
answer the following questions for each study: First, in what way 
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has the equilibrium solvation assumption been used, and second, 
what degree of freedom has been removed from the generalized 
transition state, i.e., how is the local reaction coordinate defined. 
Some of the previous work, however, defines the local reaction 
coordinate only implicitly. In addition, it is necessary to recast 
discussions in terms of solvent friction1"3'12'13,69'70 into the language 
of free energy of activation and the solvent's contribution thereto, 
as discussed for example by Gertner et al.13 

It is especially interesting to compare our conclusions to those 
of Gertner et al.12'13'" and Huston et al.21 because they have 
evaluated a recrossing factor and attributed the recrossing to 
nonequilibrium solvation effects. As evidence that the observed 
recrossing is due to solvent friction, i.e., nonequilibrium solvation 
effects, Gertner et al.12'13,19 have shown that they can account for 
the recrossing of the dividing surface, i.e., the generalized transition 
state, seen in the trajectory calculations with a generalized 
Langevin equation approach.2,16'34,38^0'71 In their most recent work, 
they evaluate transmission coefficients K defined as 

where k here represents the "true" nonequilibrium solvation rate 
constant, evaluated by a classical mechanical simulation, and k7^ 
is a "standard" transition-state theory rate constant evaluated 
under the equilibrium solvation approximation.19 They also 
evaluated K by the generalized Langevin approach of Grote and 
Hynes71 (GH) and compared the two sets of results. In the GH 
approach the transmission coefficient is given by19 

K 
*GH (H) 

wb,Eq 

where X, is the frequency for barrier crossing including dynamical 
solvent effects, and wbE<I is the equilibrium barrier frequency, i.e., 
the frequency for barrier crossing under the assumption of 
equilibrium solvation. This frequency, «biEq, is defined by making 
the assumptions that the maximum of the free energy of activation 
curve occurs at the saddle point and that this curve is parabolic. 
In the notation of section 4 this definition implies 

max,[AGgJ°] = AGg&°(j = 0) (12) 

and 

ACSSf0--JM^W2 (13) 

where the local reaction coordinate is assumed (chosen) to be 
coincident with the reaction path. The first condition, eq 12, is 
often a poor assumption31,35 although it is usually better for re­
actions with high barriers, as studied here. From eq 11 it is clear 
that KQH depends upon the frequency of equilibrium barrier 
crossing, a>biEq, predicted under the assumptions given by eqs 12 
and 13. The validity of these assumptions as well as the value 
obtained for k7^ in eq 10 is dependent on the choice of local 
reaction coordinate. Gertner et al.12,13'19 used the relationships 
for tobEq derived by van der Zwan and Hynes39 to evaluate it from 
molecular dynamics simulations. Thus, the choice of local reaction 
coordinate is made implicitly by imposing a constraint on the 
molecular dynamics simulation. Specifically, the local reaction 
coordinate is determined by the procedure for choosing an 
equilibrium distribution of trajectory initial conditions. This 
distribution implicitly defines the generalized transition state. In 
particular the local reaction coordinate is defined by requiring 
the scalar distance /-as s */2rc to remain equal to zero during the 
initial equilibration of the trajectories. This defines a surface in 
which the solvent coordinates and other solute coordinates are 
equilibrated, but this surface is not a hyperplane orthogonal to 
the imaginary frequency normal mode; in the event that the 
imaginary frequency is the asymmetric stretch at the point defined 

(69) Kramers, H. A. Physica 1940, 7, 284. 
(70) Takeyama, N. Experientia 1971, 17, 425. 
(71) Grote, R. F.; Hynes, J. T. J. Chem. Phys. 1980, 73, 2715. 

by 'as = 0 w'th all other coordinates optimized, this hyperplane 
will be tangent to the curvilinear surface defined by the constraint 
'as = 0- The constraint r^ = 0 defines a curvilinear surface because 
ris is a difference of interparticle separations. It is quite possible 
that this curvilinear dividing surface provides an adequate bott­
leneck; however, such surfaces have never been tested, even for 
gas-phase calculations where the equilibrium solvation assumption 
is unnecessary. Finally, by using the constraint ras = 0, it is 
implicitly assumed that this point (s = 0) defines the maximum 
of the free energy of activation curve for an optimum or nearly 
optimum shape and orientation of the dividing surface, and, 
consequently, that the generalized transition state defined by this 
constraint provides a good bottleneck to reaction (in the equi­
librium solvation assumption); we have shown that this is not 
necessarily a good assumption (see Figure 4). It would be very 
interesting to test whether the recrossing that Gertner et al.12,13,19 

find in their trajectory calculations and successfully reproduce 
with the generalized Langevin theory could be reduced or elim­
inated by varying the generalized transition state used in the 
trajectory calculations. 

Huston et al.21 evaluated the transmission coefficient in the 
nonadiabatic (NA) limit of the generalized Langevin theory; the 
transmission coefficient in this limit, which is called KNA, may be 
evaluated by a simple approximation of van der Zwan and 
Hynes38"40 which does not require a molecular dynamics simulation 
to evaluate any of the necessary quantities. In their calculations21 

a>bi&) is evaluated from a free energy of activation curve using eq 
13 at 5 = 0. In the application to the chloride plus methyl chloride 
system, Huston et al. found a transmission coefficient of 0.6, which 
they interpreted as a measure of solvent-induced recrossing. We 
can check the applicability of the nonadiabatic limit formula by 
evaluating KNA from the present calculations by using13'39 

wb,Eq 

where «b,NA >s evaluated as in eq 13 but using the nonequilibrium 
(i.e., full) calculation of AG^g'0 rather than the equilibrium 
solvation curve. We evaluated effective frequencies from the upper 
two curves in Figure 4; since these curves are not globally quadratic 
we fit them by using points at the maximum and the distance 
where AGfoo'0 s, max AGfoo'0 -RT, which should be the important 
region for thermally activated reactions. This yields KNA = 0.92, 
in very good agreement with the full calculations, which yield a 
nonequilibrium solvation effect of 0.93 by using the ratio of 300K 
rate constants in Table XIII. This increases the credibility of this 
simple approximation for the nonequilibrium solvation effect, so 
we may compare our calculations to those of Huston et al. with 
more confidence. We conclude therefore that the nonequilibrium 
solvation effect in bulk water is somewhat larger, 40% vs. 10%, 
for bulk water than for the monohydrated reaction. We note, 
though, that in the work of Huston et al. the free energy associated 
with the solute degrees of freedom which are orthogonal to the 
solute coordinate used to define the "free energy of activation 
curve" is neglected. It would be interesting to learn, e.g., by 
repeating their calculations including all degrees of freedom of 
the primary system, what effect these extra constraints have on 
the evaluated curvature of the free energy curve, and consequently, 
upon the calculated value of /c for bulk water. The potential 
function presented in this paper would be a suitable starting point 
for such a calculation. 

Van der Zwan and Hynes39'40 and Pollak72 have shown that the 
effects accounted for71 by generalized Langevin theory for systems 
with harmonic baths and bilinear solute-solvent coupling may also 
be accounted for by rotating the generalized transition-state theory 
reaction coordinate from being strictly within the solute coordinates 
to having components in the full solute-solvent space. This type 
of rotation is discussed in the first paragraph of this section. In 
a system with higher order couplings the analytic theory breaks 
down. Our calculations include nonlinear solute-solvent couplings 

(72) Pollak, E. J. Chem. Phys. 1986, 85, 865. 
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and optimize not only the orientation of the generalized transi­
tion-state dividing surface but also its location with respect to 
translation along the reaction path. 

It would also be interesting to compare our approach to that 
of Hwang et al.17 Hwang et al.17 calculated a free energy of 
activation profile as a function of a reaction coordinate defined 
as the difference in energy of two diabatic states representing the 
charge-transfer processes. The result is independent of the gas-
phase reaction path. In the language used here this is a non-
equilibrium-solvation variational transition-state theory calculation. 
It would be interesting to see how much the variational transi­
tion-state rate constant is changed in their model by introducing 
the equilibrium solvation assumption for a gas-phase reaction path. 
It would also be interesting to apply their approach to cluster 
reactions such as considered here to elucidate the connection 
between their reaction coordinate and ours and between their free 
energy function and our generalized free energy of activation. 

8. Conclusions 
The semiempirical potential energy function of the preceding 

paper, augmented by a water intramolecular potential and a 
water-solute interaction potential, has been used to study the 
chloride plus methyl chloride bimolecular nucleophilic substitution 
reaction in the presence of one and two water molecules, including 
all degrees of freedom. A noteworthy feature of the potential 
function used here is that we include reaction coordinate dependent 
force constants and partial charges for all atoms of the solute. 
For both the monohydrated and dihydrated reactions, we found 
that as the reaction proceeds the water molecules migrate from 
the approaching chloride to the leaving chloride. At the 
charge-dipole complex, we found that the reactant microhydrated 
chloride ion forms a weak bond to the methyl chloride with almost 
no change to the solvent-ion configuration and that rotation of 
the solvent-ion complex around the methyl chloride C-Cl axis 
has virtually no energy barrier, less than 0.0005 kcal/mol for one 
water molecule and ~0.003 kcal/mol for two water molecules. 

With the addition of just two water molecules, we see a definite 
trend toward the solution-phase reaction profile. For example, 
the barrier height, relative to reactants as zero of energy, increases 
from a value of 3.1 kcal/mol in the gas phase, to 5.4 kcal/mol 
for the monohydrated reaction, and to 10.7 kcal/mol for the 
dihydrated reaction, as compared to the accepted value of the 
solution phase barrier of 26.6 kcal/mol. These trends are mirrored 
in the reaction rates (calculated by the CVT/SCSAG method) 
which, at 300 K, decrease from 3.5 X 10"14 cm3 molecule"1 s"1 

in the gas phase, to 1.1 X 10"17 cm3 molecule"1 s"1 for the mo­
nohydrated reaction, to 3.7 X 10"20 cm3 molecule"1 s"1 for the 
dihydrated reaction. These trends are consistent with those seen 
experimentally for stepwise hydration of similar systems. 

We have also studied the monohydrated reaction under the 
equilibrium solvation assumption and have shown by comparison 
to the nonequilibrium solvation rate that a strong solute-solvent 
coupling does not necessarily mean that nonequilibrium solvation 
effects will be important. For the monohydrated reaction the 
imaginary frequency at the saddle point is 584i cm"1, 25% higher 
than the gas phase value of 469i cm"1, and the associated eigen­
vector shows a component indicating that the water molecule 
moves with the leaving chlorine. Yet, an equilibrium solvation 
calculation employing the gas-phase local reaction coordinate leads 
to less than a 10% increase in the rate constant, for all temper­
atures considered, as compared to the nonequilibrium solvation 

rate constant, indicating no significant amount of solvent-induced 
recrossing. This is consistent with the work of van der Zwan and 
Hynes39 who concluded that a fast solvent strongly coupled to the 
solute can lead to negligible nonequilibrium effects. 

We presented two methods for choosing the orientation, defined 
by the local reaction coordinate, of the generalized transition state 
in an equilibrium solvation calculation: the solvent-influenced 
local reaction coordinate method and the gas-phase local reaction 
coordinate method. (Both are consistent with the criterion that 
in an equilibrium-solvation calculation the local reaction 
coordinate—and thus the orientation of the generalized transition 
state—should be defined in the solute coordinate space only.) We 
found that the amount of recrossing of the canonical variational 
generalized transition state, determined by comparison to the 
nonequilibrium solvation rate constants, differed dramatically for 
the two methods. The solvent-influenced local reaction coordinate 
method showed a significant increase in the rate constant due to 
recrossing of the generalized transition state, ranging from a factor 
of 4.5 at 200 K to a factor of 3.0 at 300 K and a factor of 1.8 
at 1000 K, whereas the gas-phase local reaction coordinate method, 
which is the variational^ better choice, showed less than a 10% 
increase in the rate constant for all temperatures. Thus we 
conclude that caution must be exercised in drawing conclusions 
about nonequilibrium solvation effects when a particular way of 
modelling equilibrium solvation does not agree with a more 
complete dynamical calculation. In particular recrossing caused 
by a poor choice of the generalized transition state must be dis­
tinguished from recrossing caused by a breakdown of the equi­
librium solvation assumption. The generalized transition state 
theory formulation presented here provides a useful theoretical 
framework for more precise discussions of these dynamical effects, 
and the variational criterion for the choice of the best generalized 
transition state provides a practical way to find the best equilibrium 
solvation model. 

Stated another way, even if there are no nonequilibrium sol­
vation effects, an equilibrium solvation calculation will not nec­
essarily agree with a full—i.e., nonequilibrium solvation— 
calculation because there is more than one way to translate the 
equilibrium solvation assumption into transition-state language, 
and they are not all equally accurate. We used variational 
transition-state theory to choose the better of two possible ways 
to define local reaction coordinates corresponding to equilibrium 
solvation. We found that equilibrium solvation is a good ap­
proximation for the case considered since one way of incorporating 
the equilibrium solvation assumption in generalized transition-state 
theory is valid to within 8%, although another way is only valid 
to within about a factor of 3. Thus one must distinguish the failure 
of the equilibrium solvation approximation from the failure of a 
less than optimum way of implementing it. 
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